

Multivariate Analysis of a nonstationary process. Mapping out system resilience.

Ron Corstanje, Joanna Zawadzka, Delia Ivanoff, and Kathleen Pietro

09 Apr 2018

www.cranfield.ac.uk

The Everglades Storm Water Treatment Areas: a found ecological experiment in resilience

• Ecological resilience (Holling, 1973)

Capacity of an ecosystem to tolerate disturbance without switching to a qualitatively different state that is controlled by a different set of processes: *allows for evolution, adaptation and different species assemblages*

• Engineering resilience (Pimm, 1984)

Time taken to return to the pre-disturbance state, *including* original characteristics (major headache in restoration, esp. with climate change)

source: Holling, Gunderson and Ludwig, In Quest of a Theory of Adaptive Change, 2002

A mass on a spring is disturbed from its equilibrium position

A friction or damping force slowly restores the system to its equilibrium position.

Damping factor: $\zeta = \frac{c}{2\sqrt{km}}$, critically damped when $\zeta = 1$

Damped harmonic motion analogy

$y(t)=f(\mathbb{W},\zeta,C,d)$

ζ is the damping factor
ω is the natural frequency
C is the initial slope
d is the final equilibrium

Characteristic ¹	Symbol ²	A more resilient soil response	Units ³
(i) Degree of return	R_r	Returns to a stable level of function closer to a reference level (e.g. the initial level of function or level of a control sample)	U
(ii) Return time-The time taken to reach the new stable level of function	<i>R</i> ,	Reaches the stable level of function more quickly	Т
(iii) Rate of return-The rate at which the response tends towards the stable level of function (i.e. related to the gradient of the return period)	R_g	Has a steeper gradient during return	UT ⁻¹
(iv) Efficiency	R_c	Has a smaller area under the response curve i.e. is away from the reference level for less time in total	UT

Putting this into practice

Ecology, 93(2), 2012, pp. 264-271 © 2012 by the Ecological Society of America

Robustness of variance and autocorrelation as indicators of critical slowing down

VASILIS DAKOS,^{1,3} Egbert H. van Nes,¹ Paolo D'Odorico,² and Marten Scheffer¹

Operationalising Resilience

So where are the STA's in this?

The Everglades Storm Water Treatment Areas: a found ecological experiment in resilience

- The general purpose and function of the STAs is to reduce phosphorus (P) in runoff water prior to discharging to the Everglades Protection Area.
- The controls on the P removal process are therefore set by the internal biogeochemical, ecological and physical processes and conditions in each cell.
- They are intrinsically engineered systems, in which the ecosystem is manipulated to obtain a desired outcome (retaining P, removing it from the water column).
- The systems are stochastic, with frequent changes in ecological structure (emergent marsh to open water systems). The systems are also subject to frequent disturbance events (e.g. hurricanes).

If we consider a naïve, but exhaustive dataset over these systems then there may be three board expectations represented in the data:

- 1) The systems broadly function as engineered systems,
- 2) The systems are self organizing ecological systems,
- 3) The systems are entirely stochastic

So how does this relate to resilience?

- 1) (The systems broadly function as engineered systems,)
- 2) The systems are self organizing ecological systems,
- 3) The systems are entirely stochastic

source: Holling, Gunderson and Ludwig, In Quest of a Theory of Adaptive Change, 2002

Exemplars

4. Cell Areas include utility easements and test cells located in Cells 1A, 1B, and 3.

Spatial Analysis of a non-stationary process

Modelling this a non-stationary process

Verification of models vs patterns

Verification of models vs patterns

Verification of models vs patterns

source: Holling, Gunderson and Ludwig, In Quest of a Theory of Adaptive Change, 2002

Temporal Analysis: how resilient are these systems?

20

The Everglades Storm Water Treatment Areas: a found ecological experiment in resilience

If we now go back to our expectations; three board expectations represented in the data:

- 1) The systems broadly function as engineered systems,
- 2) The systems are self organizing ecological systems,
- 3) The systems are entirely stochastic

Unsurprisingly, they seem to operate as a hybrid of an engineered and self organizing ecological system.

source: Holling, Gunderson and Ludwig, In Quest of a Theory of Adaptive Change, 20